

The ContextifyHub - Providing Essential Data to **Improve Patient Outcomes in Neurocritical Care**

Iain Zwiebel, Victoria Gruen, Joshua Jose, Kacie Wheeler | Advisor: Dick Moberg Drexel University School of Biomedical Engineering, Science, and Health Systems

1 – Need

30,000

patients with severe TBI require intensive care in US each year¹

Intense lighting, loud sounds, and temperature fluctuations can contribute to disturbed sleep and impact rate of recovery as well as overall patient outcome²

Changes in external ventricular drain (EVD) stopcock position are not tracked, which limits the use of intracranial pressure data for physiological event detection or prediction during retroactive analysis

Objective

To design a turn-key system that measures and collects temperature, light, sound, and stopcock position data to provide contextual factors further enhancing multimodal monitoring surrounding neurocritical patient care

3 – Solution Intended Use + Component Details

2 – Design Inputs

Constraints:

Disinfection by EPA certified wipes/sprays, UV light, and bleach Must not generate emissions detectable above background level MR unsafe labeling as the EVD may be subjected to MRI

Requirements:

Light	Measure 0 to 5000 lux at 1 h
Sound	Measure 20 Hz to 20 kHz at
Temperature	Measure 60 to 90 degrees F
SPS	Measure 3 unique stopcock
Power	Minimum of 18 days continu

-BLE Support

LIS3DH Accelerometer:

USB-C Port for Charging + Data

-Low Power Draw (2uA)

Data log example: SPS OFF TO PATIENT - 11:39:24

- Light Sensor: VEML7700
- Sound Sensor: MAX4466
- Temperature Sensor: MCP9808 - Touchscreen UI:
- Live data readout
- System control
- Can add alerts in the future

Data log example: 50 lux, 23.89 C, 60dB - 11:39:24

References + Acknowledgements

Sensor Characterization

- Characterize all sensors utilizing calibrated reference sensors
- Design custom testing apparatuses to minimize noise
- Sensors must agree with reference sensor within 95% confidence interval in requirement range

Medical Center

factors without impacting current care practices

- potentially improve patient outcomes
- multimodal brain monitoring and TBI
- Future updates can enable improvements to real-time care

This work is funded by the Botstiber Foundation, Drexel University, and Moberg Analytics. Thank you to DaiWai Olsen, RN, PhD and Danielle Sandsmark, MD for their invaluable expertise.

QR CODE HERE

4 – Verification

Data Analysis Clinical ICP data annotated as valid/invalid based on SPS readings

The central hub is nearing completion and will soon be added to the trial

Innovation

Our system enables automated logging of clinically desirable contextual

Impact

• Tracking contextual factors gives clinicians additional information to • Annotated temporally accurate data will expand and improve research in